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SUMMARY

In this paper an efficient parallel algorithm to solve a three-dimensional problem of subsidence above
exploited gas reservoirs is presented. The parallel program is developed on a cluster of workstations. The
parallel virtual machine (PVM) system is used to handle communications among networked worksta-
tions. The method has advantages such as numbering of the finite element mesh in an arbitrary manner,
simple programming organization, smaller core requirements and computation times. An implementation
of this parallel method on workstations is discussed, the speed-up and efficiency of this method being
demonstrated by a numerical example. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Surface subsidence due to extraction of underground fluids (water, hydrocarbons) plays an
important role in reservoir engineering. In recent years a great deal of attention has been
directed towards this phenomenon, also because it affects historical cities, like Venice and
Ravenna in Italy [1–5]. Subsidence analyses are computationally intensive because they involve
problems of regional scale and very long time spans, e.g. in the case of the Groningen gas field,
subsidence predictions for the year 2050 have been made from the year 1973 on.

Moreover, there may be several reservoirs at different levels distributed over a large area
with possible interaction. A typical case is the upper Adriatic region, where the depth of the
location of the pools ranges between 900 and 4000 m and the horizontal area involved is about
19000 km2. In addition, the different pools are not put in production at the same time, which
complicates the situation further. Thus, in general, a subsidence analysis is usually very time
consuming, also because of the number of interacting fields (variables) involved. Hence, even
if the problem is a three-dimensional one, the major part of studies is still mainly limited to
one- or two-dimensional analyses. However, lower-dimensional models cannot always simulate
these problems correctly. Thus, it seems necessary to construct and solve three-dimensional
models. One such model exists [6], but it is rather expensive for gas reservoirs, where a more
convenient approach can be used [7].
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Recent developments in parallel computing has enabled rapid linear, non-linear and
dynamic analysis of complex structures [8–12]. This same computational power may be
utilized for efficient three-dimensional subsidence analyses. In this paper, a multi-level frontal
parallel algorithm has been developed for such an analysis. The given domain of the problem
is discretized into multi-level substructures. High-level substructures, named super-elements,
are composed of lower level substructures. Multi-wavefronts are first used to assemble and
eliminate variables in the lowest level substructures. The contributions for super-elements are
obtained when every wavefront comes to the boundary of each substructure. Then, multi-
frontal procedures go up to higher level super-elements, and so on up to the highest level
super-element. Finally, the global interface equations are solved. Once the values correspond-
ing to the highest level super-element have been obtained, the solutions of the super-elements
or substructures at other levels may be obtained through back-substitution routines level by
level. In every super-element or substructure at the same level, multi-frontal procedures are
independent and can be carried out in parallel. A similar concept was developed also by Geng
et al. [12].

The basic formulation of the problem is briefly recalled, then the details of the parallel
computing strategy employed for its implementation on a cluster of workstations are given. A
numerical example is presented, with speed-up resulting from the parallel strategy.

2. THE PROBLEM OF SUBSIDENCE ABOVE GAS RESERVOIRS

The particular subsidence problem solved here is first briefly summed up as follows [5,7]. It is
supposed that there are several gas reservoirs at different levels, and some of the reservoirs
have an edge aquifer. It is further assumed that in each respective domain there is only one
fluid: water in the aquifers and gas in the reservoirs. The gas, upon exploitation of the
reservoirs, may be substituted by encroaching water, which comes from the edge aquifers and
from possible leaky aquitards. Capillary effects due to the simultaneous presence of gas and
water in the reservoirs are hence neglected. They may play a significant role [13] and will be
introduced in the future. With these assumptions, we have the following balance equations [7],
where the chosen macroscopic field variables are displacement u and water pressure pw.

Linear momentum balance equation for the mixture solid+water or solid+gas

9Ts+rg=0, (1)

where s is the total stress vector, g is the acceleration of gravity and r is the averaged density
of the mixture:

r= (1−f)rs+frp, (2)

where p=w (water) or g (gas), s=solid, f being the porosity.

Flow conser6ation equation for the aquifers and aquitards
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where m is a vector with components equal to unity for the normal stress components and zero
for the shear stress components, Kw is the bulk modulus, Ks is the averaged bulk modulus of
the solid grains, k is the absolute permeability matrix of the medium, DT is the tangent matrix,
o is the total strain of the skeleton, and m is the dynamic viscosity of the water.
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Instead of writing a similar mass balance equation, as Equation (3), for the gaseous phase,
we consider its integral form for the whole reservoir volume. This is valid if the reservoir
volume is small compared with the analysed cross-section and its thickness is small compared
with the depth of burial. The conservation equation hence assumes the form of a

Material balance equation for the reser6oir

GBgi= (G−Gp)Bg+We−WpBw, (4)

where G is the initial free gas in place, Bg is the gas formation volume factor, Gp is the
cumulative gas production, Wp is the cumulative water production and We is the influx from
the adjacent aquifer and from leaky aquitards; the index i denotes initial conditions. In
incremental form, the above equation can be written as

(G−Gp)DBg+DWe=DGpBg+BwDWp+DBwWp. (5)

The formation volume factor for natural gas [14] is obtained from the state of gas equation
as
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where Z(P, T) is the compressibility factor, T the absolute temperature and sc stands for
surface conditions.

Equations (4) and (6) yield at each time step gas pressure pg, when gas and water inflow are
known. This gas pressure is applied in the reservoir volume as a boundary condition and the
whole subsiding domain is then analysed using the fully coupled Equations (1)–(3). Equations
(4)–(7) are necessary when the gas production is given as an input. Sometimes the gas pressure
decline in time is given either from in situ measurements or from separate flow analyses. In that
case, these pressures can be used directly as boundary conditions in the reservoir. It is
customary to assume that the pressures in the reservoir or large parts of it are constant in
space.

A generalized Galerkin procedure [5,15] is introduced to discretize the governing equations
(1)–(3), yielding the following system of equations

cuuu; +cuwp; w+ fu=0,
cwuu; +cwwp; w+kwwpw+ fw=0,

(8)

All matrices are listed in Appendix B.
Discretization in the time domain is accomplished through approximating u, pw with a linear

variation within each time step Dt

{u, pw}={1−a, a}
� ut

ut+Dt

pt

pt+Dt

n
, (9)

where

a= (t− tn)/Dtn. (10)

The point collocation method at the (n+1)th time step yields the following matrix equation
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KXn+1=F, (11)

where
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and XT={u, pw}. It has to be reminded that this system of equations has to be solved
iteratively together with Equations (4) and (6) or (5) and (7) if the (cumulative) gas production
is given as input.

3. SUBSTRUCTURING TECHNIQUE

Substructuring techniques have been efficiently used in the finite element analysis [16]. They
may be described as ‘divide-and-conquer’ algorithms since their objective is to divide the larger
problem into a series of smaller subproblems. The basic formulation of substructuring method
is briefly recalled here.

Consider a domain, V, that is subdivided into m subregions (substructures) without
overlapping boundaries V=@ j=1

m Vj.
For each substructure, Equation (11) takes the following matrix form�kkmm

i ((xm)n+1)
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where kkmm
i indicates the part of kkmm referring to the interface nodes belonging to substruc-

ture i. They can be obtained by assembling the element matrix equations.
The elimination of the internal nodes can be carried out in every substructure. Application

of static condensation to Equation (14) results in the following:�I
0
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The global interface equations may be assembled by using the coefficients corresponding to
interface variables in each substructure� %

n
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The interface values (xm)n+1 are obtained by solving Equation (16). These are then introduced
into the first of Equations (15) to obtain the values (xi)n+1 within each substructure

((xi)n+1)=kkii
−1((xi)n+1)[ffi(xi)n−kkim((xm)n+1)((xm)n+1)]. (17)

Again, Equations (4) and (6) yield the boundary conditions at the beginning of each time step.
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4. MULTI-FRONTAL ALGORITHM

Solving Equations (15)–(17) directly consumes huge computing times. A multi-frontal method
can efficiently carry out the above mentioned static condensation in each substructure. It is not
necessary to solve directly the inverse of the matrix kkii and form directly the coupling matrices
kkim and kkmi associated with internal and interface nodes.

First of all, a very brief sketch of the operations performed in the program may be helpful.
The frontal solution method of Irons [17] recognizes the basic property of the finite element

method that a typical node ik contributes a non-zero entry jk in the matrix KK only when the
node jk belongs to one of the elements that contains the node ik. Irons has made full use of
this characteristic feature by controlling the order of elimination according to the sequence as
against the node numbering in band schemes. The wavefront never exceeds the bandwidth and
is usually smaller. The frontal process alternates between accumulation of element coefficients
(assembly) and elimination. Only the coefficients of matrix KK associated with the ‘active’
variables need to be readily available in the core. A variable is said to become ‘active’ on its
first appearance, and is eliminated immediately after its ‘last’ appearance.

Consider for this purpose, the two-dimensional four-element ten-noded mesh shown in
Figure 1. The solving region is subdivided into two substructures. As an example, it is
supposed that each node has only one degree of freedom, and all the equations are stored in
the order of ascending node number. A nodal number array is constructed by tracing
elimination of degrees-of-freedom of nodes. All degree-of-freedoms of the interface nodes are
set with positive signs, and degree-of-freedoms corresponding to fully summed nodes are
always set negative. The matrices A and B are defined as the operating matrices of frontal
routine in which the element matrices are to enter. For the left substructure, after assembling
of element 1, the states of the matrices A and B are as follows:

Figure 1. Multi-frontal processes.
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where aij and bi are the coefficients and the right-hand-sides of the element equations, and
superscripts 0 and 1 denote operating stage and the element number respectively.

At stage 0, because the contributions to variables x1 and x2 are completed (their rows and
columns are fully summed), x1 and x2 may be eliminated. Eliminating x1 yields

A1=Ã
Æ

È

(a42
1 )1

(a32
1 )1

(a22
1 )1

(a43
1 )1

(a33
1 )1

(a23
1 )1

(a44
1 )1

(a34
1 )1

(a24
1 )1

Ã
Ç

É
, B1=Í

Á

Ä

(b4
1)1

(b3
1)1

(b2
1)1

Ì
Â

Å
, (19)
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Similarly, x2 is eliminated
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In the above elimination process, the pivotal rows are normalized by division with pivots
and removed into another array for back-substitution. In this stage, x3 and x4 are active
variables.

Suppose now that the equations from element 2 are assembled, then the operating matrices
A and B become
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After assembling element 2, x3 and x4 may be eliminated from the operating matrices, while
x5 and x6 become active variables. Because of nodes 5 and 6 are the interface nodes and their
degrees-of-freedom have been set positive, the frontal routine stops. The static condensation of
Equation (15) has been accomplished. The contributions to the coefficient matrix and
right-hand-side vector of the interface equation (16) can be directly obtained from the arrays
A and B. A similar procedure can be used in the right substructure. Finally, the interface
equation (16) can be formed by summing the contributions of both substructures.
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Figure 2. Organization of a multi-level structure.

5. MULTI-LEVEL FRONTAL SCHEME

A multi-level frontal scheme can be used for multi-level substructural analysis [18,19]. The
given domain of the problem is discretized into multi-level substructures. A substructure at
higher-level, called super-substructure, can be composed of the substructures that are at the
lower level. Multi-frontal procedures are first used to assemble and eliminate at the lowest level
substructures. The contributions to the equations of higher level substructures are obtained
once every wavefront comes to the boundary of its own substructure. Then multi-frontal
procedures go up to the substructures at a higher level, and so on up to the equations of the
highest level substructure, i.e. global interface equations. Finally, the interface equations are
solved to obtain the values of variables of the highest level structure. Once the equations
corresponding to the super-element at the highest level have been solved, the solutions of other
substructures may be obtained through back-substitution routines level by level.

In order to show how to construct the multi-level structure, the example of Figure 1 will
again be used. However, every element of this example is here treated as a substructure that
may contain many elements; the entire region is hence divided into four substructures.
Super-elements 1 and 2 can be composed of two substructures on both sides of line ab
respectively. Finally, super-elements 1 and 2 compose super-element 0 at the highest level.
Figure 2 shows the constructing method of such a tree-level substructure.

The solution of the example described above by using a multi-frontal scheme can be reached
through the multi-frontal procedures of Section 3 to do static condensations in the first level
substructures, and form the equations of super-elements 1 and 2 respectively. Then multi-fron-
tal procedures go up to the second level, finish static condensations of each super-element and
assemble super-element 0. When the values of the nodes corresponding to the super-element 0
are obtained, the solutions for every substructure level can be obtained by using a back-
substitution routine of multi-frontal procedure level by level.

6. PARALLEL COMPUTING ORGANIZATION

Parallel computing for the problem described in the previous sections is implemented on a
cluster of workstations through the parallel virtual machine (PVM) system [9,10].

The PVM system is composed of a set of user-interface primitives and supporting software
that together enable concurrent computing on loosely coupled networks of processing ele-
ments. PVM may be implemented on a hardware base consisting of a mixture of machine
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architectures, including single CPU systems, vector machines and multi-processors. These
computing elements may be interconnected by one or more networks, which may themselves
be different. Applications access these processing elements via a standard interface, namely a
set of well-defined primitives that are embedded in procedural host languages. They are
composed of one or more components that are subtasks at moderately large level of
granularity. During execution, multiple instances of each component may be initiated.

The PVM user interface is strongly typed; a support for operating in a heterogeneous
environment is provided in the form of special constructs that selectively perform machine-
dependent data conversions where necessary. Inter-instance communication constructs include
those for the exchange of data structures as well as high-level primitives, such as broadcast,
barrier synchronization, mutual exclusion, global extreme and rendezvous.

Application programs view the PVM system as a general and flexible parallel computing
resource that supports a message passing model of computation. PVM supports three general
parallel programming models: tree computations, crowd computations and hybrid computa-
tion, in which crowd computing is the most common model for PVM applications. In this
paper, the master–slave (or host–node) model in crowd computing is adopted. The master
program is responsible for process spawning, initialization, simple computation, collection and
display of results. The slave programs perform the actual computation involved.

Programming a PVM-like workstation network is, for the most parts, similar to program-
ming a sequential computer, except that special attention has to be paid to the operations
requiring communication among the processors. Most computations in the proposed algorithm
can be performed at the substructure or super-element level. Thus, a natural parallel imple-
mentation of the method comprises a mapping of one (or more) substructure(s) (or super-
element) onto each processor of workstation networks. The multi-level frontal parallel method
is described in Figure 3. In general, the number of the substructures and super-elements will
reduce, with increasing level, in the multi-level substructures [20]. Thus, it is better to balance
the work of each processor on the basis of the number of substructures and super-elements.

7. APPLICATION

As an example, the subsidence in a small portion of the Northern Adriatic Basin is
investigated, where four gas reservoirs are sited at different depths in the subsoil and are
exploited with different production histories. The situation requires a three-dimensional
analysis. In the Northern Adriatic Basin, several gas fields exist that are actually exploited or
are planned to be exploited. Hence, material properties have been extensively investigated and
are available. The studied region covers an area of 40×40 km2 and has a depth of 1300 m;
it is discretized by 7×7×12 20-noded isoparametric elements (with a total amount of 588
elements and 3056 nodes). Free flux on the horizontal and vertical boundaries of the
investigated area is assumed. The stratigraphy and some material parameters are shown in
Figure 4 and Table I [7,21], ki being the permeabilities along direction i, a the compressibility
of the grains and g the specific unit weight of the solid (g=0 means that subsidence problems
for natural consolidation of the soil are neglected in the computations). Some data have been
obtained through analysis of master-logs at our disposal, which are representative of the
investigated area. The location of the pools is shown in Figure 5 (horizontal projection); in
particular, the division into substructures is indicated: the two-level substructure analysis is
characterised by two substructures, each one with 1528 elements, whereas the three-level
analysis by four substructures with 147 elements.
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Figure 3. Steps used by a cluster of workstations.

Figure 4. The stratigraphy scheme (vertical section A–A).
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Table I. Material properties

Layer E n kx ky=kz a g
(MPa) (m day−1) (m day−1)

224 0.39 0.865E−04 0.865E−041 0.10E−12 0.0
2 898 0.15 0.9752 0.9752 0.10E−12 0.0

555 0.37 0.865E−04 0.865E−04 0.10E−12 0.03
322 0.38 0.865E−044 0.865E−04 0.10E−12 0.0

1140 0.17 0.7985 0.79855 0.10E−12 0.0
1000 0.37 0.865E−046 0.865E−04 0.10E−12 0.0

7 1130 0.17 0.2208 0.2208 0.10E−12 0.0

Figure 5. Location of the reservoirs (horizontal projection) and division into substructures.

The exploitation points (wells) are assumed to be equally distributed above each reservoir so
as to allow for the assumption of a constant drop of pressure inside it. The pressure histories,
shown in Figure 6, obtained from previous reservoir simulators, are applied as boundary
conditions to the nodes of each pool. A computationally more expensive alternative would be
to apply the outflow given from the production schedule (if available), as explained in Section
2. The results for a three-level substructure analysis in terms of surface subsidence above each
reservoir are shown in Figure 7; the effect of interaction among the different reservoirs can be
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seen from the shifting in time of the maximum value of subsidence as compared with the
minimum of reservoir pressure. This phenomenon is also to be partly ascribed to the presence
of thick clay layers confining the pools. Figure 8 shows the surface settlement at the time of
maximum subsidence, along an ideal broken line passing above the central point of each
reservoir.

Table II gives the computing time, speed-up and efficiency of the considered example,
showing that problems like this can be run efficiently on a cluster of workstations. The
speed-up is measured by speed-up=Ts/Tp, where Ts is the solution time of one processor
(CPU) and Tp is the parallel computation time using p processors (CPUs) of the workstations.
The efficiency is measured by speed-up/p, where p is the above mentioned number of
processors.

Figure 6. History of the reservoirs pressures.

Figure 7. History of surface subsidence above the reservoirs.
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Figure 8. Land subsidence.

Table II. Speedup and efficiency

CPU time (s) Speed-upNumber of processors Efficiency (%)

47625.542 —1 —
2 (2-level substructure) 24640.012 1.93 0.965
4 (3-level substructure) 16535.65 2.88 0.72

8. CONCLUSIONS

In this paper a multi-level frontal parallel algorithm has been presented for a three-dimensional
analysis of subsidence above gas reservoirs. The main operations of the method are performed
by means of multi-level frontal processes at a super-element level in parallel. Multi-frontal
processes in the multi-level substructures can increase utilization ratio of parallel processors.
The given domain is partitioned into multi-level substructures according to the following rules:
(1) the global interface problem should be minimized, i.e. the super-element in the highest level
must consist of minimum nodes connectivity to reduce the magnitude of the global interface
equations and communication overheads in parallel computation; (2) lower super-elements
should have roughly an equal amount of computational load to ensure that all the processors
finish their work at about the same time.

The proposed parallel implementation of the method allocates one super-element to each
processor of a cluster of workstations and handles the communications among the networked
workstations by using the popular parallel software package PVM. The application shows that
the multi-level frontal parallel algorithm for three-dimensional subsidence analysis results in
considerable savings in computer time. Workstations have communication speed slower than
usual parallel computers; this may more or less reduce parallel computing efficiency. However,
they are still capable of performing parallel three-dimensional subsidence analyses above gas
reservoirs effectively. Although this algorithm is developed for workstations, it is also suitable
for other parallel computers.
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APPENDIX A. NOMENCLATURE

strain matrix relating strain and displacementB
tangent matrixDT

acceleration of gravity (m s−2)g
k absolute permeability matrix

bulk modulus of liquid phaseKw

bulk modulus of solid phaseKs

vector with unit values for the normal stress components and zero for them
shear stress components

pw liquid water pressure
time (s)t

tf traction imposed on boundary
u displacement vector of solid matrix (m)

body force vectorb

Greek letters
Biot’s constanta

strain vectoro

all other strains not directly associated with stress changeo0

porosity (pore volume/total volume)8

effective density of porous medium (kg m−3)r

rw liquid phase density (kg m−3)
solid phase density (kg m−3)rs

total stress vectors

time step (s)Dt

APPENDIX B

The matrices contained in the discretized governing Equation (8) are

cuu= −
&

V
BTDTB dV,

cuw=
&

V

�
BTmN−

1
3Ks

BTDTmN
�

dV,

f: u=
&

V

�
NT db

dt
+BTDT

do0

dt
�

dV+
&

G
NT dtf

dt
dG,
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cwu=
&

V

�
NTmTB−

1
3Ks

NTDTmTB
�

dV,

cww=
&

V
NT�1−f

Ks

+
f

Kw

−
1

(3Ks)2 mTDTm
n

N dV,

kww=
&

V
(9N)T k

m
9N dV,

fw=
&

V
(9N)T k

m
9rgh dV+

&
G

NTq dG.
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